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08855-0849, USA 

Received 24 J a n u q  1995 

Abstract. The 20 off-critical q-state Pons model with boundaries was studied as a factorizable 
relativistic scattering theory. The sanering S-matrices for panicles reflecting off the boundaries 
were obtained far the cases of ‘fixed’ and ‘free’ boundary conditions. In the king limit, the 
computed resdts agreed with recent work [SI. 

1. Introduction 

In the past decade, many advances have been made in two-dimensional statistical mechanical 
systems by applying the idea of conformal invariance [I]. Their critical points are well 
described by conformal field theory (CFT) and their universality can be classified by a 
Virasoro central charge c [2]. When such a model is perturbed o f f  their critical point, the 
conformal symmetry is broken and the theory develops finite correlation lengths. However, 
for certain perturbations, residue symmetries survive in the form of an infinite set of 
commuting integrals of motion and render the theory integrable [3]. Such ‘perturbed 
conformal field theories’ can often be described by a relativistic scattering theory of massive 
particles where the S-matrix is factorizable. All physical information about the field theory 
can then be obtained from the S-matrix by constructing comelation functions using the 
form-factors method [4]. 

Recently, statistical systems with boundaries were studied using the above method [5]. It 
was found that one can choose certain boundary conditions which preserves the integrability 
of the bulk theory. Such integrable boundary conditions can be represented by the boundary 
S-matrix describing the scattering of particles from the boundary. In this work, such 
boundary S-matrices are obtained for the q-state Potts model (for 0 < q < 4) with free and 
fixed boundary conditions. 

2. Integrable q-states Potts model 

In the lattice q-Potts model [6], the spins a(x )  at the sites of the lattice are allowed to be 
in one of the q possible states (1.2, . . . , q). The partition function Lias the form 
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where the product is taken over the nearest neighbours of the lattice, and is invariant under 
the permutation group S,. The phase transition point of this model occurs at 

K=K,=&. (2) 

For 0 < q < 4, this is a second-order phase transition, and its critical point is described by 
the CFT with central charge [7] 

where &==sin 
6 

c = l -  
P(P + 1) 

(3) 

The energy density E ( X )  of the Potts model then corresponds to the degenerate primary field 
Q(z.1) (in the notations of [2]) with dimension 

1 3  
A - -+ - .  

L - 4  4 p  (4) 

This field is also a relevent operator in the theory, and perturbation of the cm action by 
this field leads to an off-critical theory with action 

Aq,r = AcFT(~)  + 5 1 E(x)dZx (5 )  

where 

K, - K 
KC 

5=-  

and Acm(c) is the ‘action’ of the FFT with central charge c. This action describes the 
scaling domain of the q-Potts model, and is shown in [8 ]  to be an integrable field theory 
(i.e. possess non-trivial higher-spin local integrals of motion). Following [ 8 ] ,  we consider 
the low temperature phase K z K, of this theory. The field theory (5) has q degenerate 
vacua la); U = 1, . . . .qv with S, acting by permutations of these vacuum states. Its 
particle content must then contain q(q - 1) ‘kinks’ A&; a ,  b = 1, . . . , q;  a # b, which 
corresponds to the domain wall separating vacua a and b. The antiparticles can be identified 
by ,iob = Abo. The masses of these particles are taken to be equal to M - \zI’’(’-&). 

The scattering of these asymptotic particles is governed by the S-matrix and the 
integrability of (5) implies that this S-matrix is factorizable. Recall that the energy- 
momentum of particles can be parametrized by their rapidity 0 ,  where 

E = MchO P = MshO . (7) 

The asymptotic particles states are generated by the ‘particle creation operator’ A+&) 
satisfying the quadratic commutation relations 
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Figure 1. The scattering processes for the bulk 
S-matrix elements SO@). S~(ff), h(0)  and &(e) 
defined in (9); with (2 # b # e # d .  

s2 s, 

a d 

where OI2 = 01 -Oz. The S, symmetric two-kink S-matrix elements (figure 1) were computed 
in [8] to be (for a f b # c # d )  

where 
3 p - 1  A=---- 
2 p + l  

and 

r(i + %A - X ) r ( m  - x)r(i + (2k - ))A - x)r( (2k  + ;)A - X )  
~ 

n k ( X )  = r(i + (2k + i ) A  -x)r((2k + i ) ~  - x)r ( i~  + (zk - :)A - x)r((zk + $)A - X )  . 
The amplitudes SI@) possess a 'bound-state' pole at 8 = (figure 2(a)) while &(e) have 
the 'cross-channel' pole at 8 = L$ (figure 2(b)). Likewise So@) have both the above poles 
(figure 2(c)) with residues 

(12) Res,=+So(8) = Res,,?srS1(0) = -Rese,.zSo(8) = -Res,=kS2(0) = i f 2 ( h )  

where 

is the 'three-kink coupling' (figure 3). 
As is shown in [8], the complete particle spectrum of field theory ( 5 )  for 3 < q < 4 is 

quite complicated with the appearance of exotic excitation and bound states. For simplicity, 
we will restrict our attention to the range 0 < q < 3. 
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Figure 2. (a)  Spacetime diagrams associated 
with the pole at 0 = in SL(8) and (b) the 
corresponding cross-channel pole in Sz(0). The 
amplitude So(@) possesses both poles as shown in 
(c); the states (2, b, e. d are dl different. 

= I c  
I Figure 3. Tree-kink vena associated with the ‘coupling connstulc’ f .  

3. Boundary S-matrix 

It is natural to consider the Pons model in the presence of boundaries with some boundary 
conditions imposed on the boundary spins. In [ 5 ] ,  it was shown that certain boundary 
conditions preserve the integrability of the bulk theory (i.e. an infinite subset of the bulk 
integrals of motion survives with the introduction of the boundaries). For a relativistic 
scattering theory of massive particles, one can associate these integrable boundary conditions 
with certain boundary S-matrices which describe the scattering of particles with the 
boundary. 

To be more precise, consider the model defined on an semi-infinite plane (say x E 
(-w,O],y E (-CO, CO), the y-axis being the boundary). Let us suppose that there exist 
integrable boundary conditions for the Pots  model with the modified action 

where A q , r + ~ ~ ~  is the action (5 )  with certain conformal boundary conditions (CBC), and 
@ ~ ( y )  is some relevant boundary operator [9,5]. One can think of (14) as a perturbation 
of CBC, and the corresponding Fock states can be classified as asymptotic scattering states. 
In particular, the boundary with boundary spins in the state ‘a’ can be associated with a 
stationary impenetrable particle Bo of infinite mass at x = 0. Then the asymptotic n-kink 
scattering state can be written as the product 

A,,,, (6 )A,,., (02) ‘ ’ Aa,,-,a, (On-~)Aa~a(On)Ba (15) 

where the vacua a l ,  az. . . . , a, satisfy the restrictions ai # ai+], and a, # a. 
If the initial ‘in-state’ of scattering is the asymptotic state (15) with 01 > 02 > . . . > 

0, > 0 (i.e. n kinks moving towards the boundary of state ‘a’),  then in the infinite future, 
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Figure 5. Boundary Yang-Buter equation. The variables g. f, g', f' F 1,2,. . . , q satisfy the 
'admissibihty conditions' g f c. e: f # b, g; g' # a, c; f' # d, g'. Boundary conditions M 
also place further consuaints on these variables. 

this state becomes a superposition of the final 'out-states'. Integrability of (14) constrains 
'out-states' to have the form 

Ablbi(-8i). . . Ab.-lb,(-$-~)Ab,b(-8n)Bb (16) 

with bi # b;+l and b, # b. Thus we have the relation 

Ao,a2(8~)AoZa3(8d. . . A ~ " - ~ = " ( ~ " - I ) A ~ " ~ ( ~ " ) B ~  =E ' ' ' Ri:;::i$(fA, . . . . %)Ab,& (-81) . . . Ab,.,b, (-$-~)A&b(-@n)Bb 
bt ba b 

(17) 

which defines the n-kink boundary S-mamx. When n = 1, we have the simple commutation 
relation 

Aba(8)& = ~ R ~ a ( & % ~ ( - @ ) &  (18) 

where Rgo(8) are elements of the boundary S-matrix for the reflection of one particle off 
the boundary (figure 4). It follows from the factorizability of the scattering that RZ:::$ can 
be written as a product of bulk amplitudes S::, and boundary amplitudes R i a .  For example, 
when two kinks scatter off the boundary, the amplitude for this scattering can be factorized 
in two equivalent ways (figure 5), leading to 
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Figure 7. Scattering pmcesses for the cross-unir~ly condition (22): b # o, c and d # a ,  e. 

which is known as the 'boundary Yang-Baxter equation' [lo]. 

(19). Firstly we have the 'boundary unitarity condition' (figure 6) 
As is known, the amplitudes R;,(O) have to satisfy several conditions in addition to 

which is a direct analogue to the unitarily condition for the bulk S-matrix. To obtain the 
crossing symmetry condition for the boundary scattering, it is necessary to use the 'cross 
amplitude' 151 

Kobc(0)  = Rga (: - 0 )  . 

As shown in [5], this amplitude K d C ( 0 )  has to satisfy the so-called 'boundary crosslunitarity 
condition' 

Kab'(8) = S~,(20)K"d'(-O) (22) 
df0.e 

which is illustrated in figure 7. Finally we have the 'boundary bootstrap equation' [ l l ]  
which describes the scattering of 'bound-state' particles with the boundary. In the bulk 
theory, the kink Aob can appear as a bound-state particle in the two-particle scattering (see 
figure 2) 

where f is the three-particle coupling in (13). Applying the algebras (S ) ,  (18) and (23) to 
the 'in-state' A,,@ + %)Acb(6 - ?)&. we obtained the bootstrap equation (figure 8) 

for the S, symmetric Potts model. 
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Figure 8. Boundary bootstrap equation where states e and f must satisfy the 'admissibility 
condition' and the boundary condition. 

Figure 9. Physical poles of the boundary S-matrix with conditions (I # b # c in (0). and 
~1 # b. e in (b). Here 66' IS the boundary coupling constant for the panicle A,6. 

( a )  ( b )  

Figure 10. Boundary S-mmix elements far the free boundary condition with a .  b, and c dl 
differenr. 

Equations (19) through (24) a110,w the boundaq S-matrix elements Rib(@ to be 
determined up to some CDD factors [5]. For boundiuy conditions which respect the S, 
symmetry, we can expect R&(B) to have a pole at Q = $ (figure 9(a)) with residue 

where gg is the amplitude for coupling of the particle Aeb to the boundary (figure 10). 
Furthermore, if gz, g: # 0, the element Rocb(@) has another pole at 0 = % (figure 9(b)) 
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where 

This pole is shown in figure 10. Of course, the presence of the above poles depends on the 
boundary condition, as we shall see when we consider the two simplest cases: ‘free’ and 
‘fixed’ boundary conditions. Both cases are conformal boundary conditions (i.e. @s(y) = 0) 
and we conjecture that they also preserve integrability in the off-critical Potts model. 

4. Fixed boundary condition 

In this simple boundary condition, the boundary spins are all fixed to one state, say ‘a’. 
The corresponding boundary S-mat+ element 

R;,(@) = R A @ )  (27) 

To determine this satisfies the boundary Yang-Baxter ba equation (19) automatically. 
amplitude, one appeals to the unitarity condition (20) 

Rf(B)Rf(-O) = 1 (28) 

where 

is the crossing amplitude. Since all boundary states are fixed, we do not expect R,(S) to 
possess any poles in the physical domain 0 Q B < F. The solution to (28) and (29) can be 
factorized as 

where F, (X) solves 

sin(2rr(h - X)) 
sin(2rr(f - X)) 4 (X) = r I ( A  - 2X) . F, (A - X) . 

The equation 

F,( -X)F1(X)  = 1 

and its minimal solution can be written as 
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(34b) 

up to some CDD factors. 
The factor F&9) can be obtained from the fixed boundary bootstrap equation (24) 

R f ( 0 )  = [Si(Z0) + (4 - 3)So(20)lRf (35) 

which reduces to 

with simple solution 

FO(0) = -tan - + - (: :") 
In the king limit (q = 2, h = $, the boundary S-matrix has the fom 

R f ( 8 )  = itanh(% - i) 

(37) 

as obtained in 151 by the field-theoretic method. 

'A' ,  the solution simplifies as 
In the other interesting limit q = 3 (h  = l), suppose the boundary is fixed in the state 

5. Free boundary condition 

In contrast to the fixed boundary condition, we have the 'free' case where the boundary spin 
order parameters can be in any one of the q states. The corresponding boundary S-matrix 
has to respect the S, symmetry and the algebra (18) simplifies to 

where the amplitudes Rl(8)  and Rz(0) are shown in figure 10. 



where we use the fact that Rz(6') has a simple pole at 0 = %, which is absent in RI (e). We 
do not expect RI (6') and %(e) to have any other poles in the physical domain (0 < 6' < $). 
The normalization factor P($) is constrained by the unitarity conditions (20) and (21), 
which reduce to 

P(ey1-s) = 1 (44a) 

and 

respectively. The minimal solutions can be written as 
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(45b) 

up to some CDD factors. The sign in (45) can be justified by the boundary bootstrap equation 
(24). 

In the Ising limit (A + i), the boundary S-matrices element simplifies to 

in agreement with [5]. For the q = 3 Potts model (h -h l), the two scattering amplitudes 
have the form 

Finally, a simple computation gives us 

dr e--1--4A1 

g(h) = -/?sin ( F A )  exp 11 - t 2(1 . - e-I)(l + e-*Al) 

for the boundary coupling constant. 

6. Conclusion 

In this study, the q-Potts model boundary S-matrices for free and fixed boundary conditions 
were derived. It would be interesting to apply the techniques of the thermodynamics Bethe 
ansatz to study these S-matrices. In particular, one can investigate the renormalization- 
group flow between various boundary conditions [5,13]. This work is in progress. It may 
also be possible to use these boundary S-matrices to compute the crossing probabilities for 
the percolation problem (q = 1) in a finite region [12]. Recently, quantum field theories 
with boundary were successfulIy applied to study the s-wave scattering of electrons off an 
impurity (for a review see [14]). It would be worth determining what scattering phenomena 
exhibit the b o u n d q  S-matrix structure of the q-Potts model. Finally we would like to add 
that boundary S-matrices can in fact be derived from the lattice model itself [15, 161, and it 
seems to be an interesting exercise to carry out such a construction for the q-Potts model. 
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